Browse Publications Technical Papers 2020-01-1082
2020-04-14

Vibration Control of Semi-Active Vehicle Suspension System Incorporating MR Damper Using Fuzzy Self-Tuning PID Approach 2020-01-1082

In this paper, a nonlinear semi-active vehicle suspension system using MR fluid dampers is investigated to enhance ride comfort and vehicle stability. Fuzzy logic and fuzzy self-tuning PID control techniques are applied as system controllers to compute desired front and rear damping forces in conjunction with a Signum function method damper controller to assess force track-ability of system controllers. The suggested fuzzy self-tuning PID operates fuzzy system as a PID gains tuner to mitigate the vehicle vibration levels and achieve excellent performance related to ride comfort and vehicle stability. The equations of motion of four-degrees-of-freedom semi-active half-vehicle suspension system incorporating MR dampers are derived and simulated using Matlab/Simulink software. Control performance criteria including bounce and pitch motions are evaluated in both time and frequency domains in order to quantify the effectiveness of proposed system controllers under bump and random road disturbances. Fuzzy self-tuning PID controller gives a better force tracking than fuzzy logic. The performance of both controlled semi-active suspension systems using MR dampers is compared with MR passive and conventional passive to show the efficiency of the proposed controlled suspension systems. The simulation results prove that the semi-active MR suspension system controlled using fuzzy self-tuning PID controller can offer significant improvements of ride comfort and vehicle stability among all investigated systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
JOURNAL ARTICLE

Application of a Digital Twin Virtual Engineering Tool for Ground Vehicle Maintenance Forecasting

2022-01-0364

View Details

TECHNICAL PAPER

Development of Active Suspensions Using Velocity Feedback

960935

View Details

JOURNAL ARTICLE

Cooperative Optimization of Vehicle Ride Comfort and Handling Stability by Integrated Control Strategy

2012-01-0247

View Details

X