Browse Publications Technical Papers 2020-01-0284
2020-04-14

Evaluation of Zero Oil Cooling for Improved BTE in a Compression Ignition Engine 2020-01-0284

With increasing diesel engine emissions regulations and the desire to increase overall thermal efficiency of the engine, various combustion concepts have been explored. One of the potential pathways to higher efficiency is through reduction of in-cylinder heat transfer. In this paper, a concept aimed at decreasing in-cylinder heat transfer through increased piston temperature is explored. In order to increase piston temperature and ideally reduce in-cylinder heat transfer, a Zero-Oil-Cooling (ZOC) piston concept was explored. To study this concept, the test engine was modified to allow piston oil cooling to be deactivated so that its impact on parameters such as BTE, piston temperature, and emissions could be evaluated. The engine was equipped with in-cylinder pressure measurement for combustion analysis as well as a piston temperature telemetry system to evaluate piston crown temperature. This paper will discuss the process by which the engine was modified to achieve ZOC and tested. Engine and piston telemetry data with and without oil cooling will be shown to demonstrate the impact on brake thermal efficiency and piston temperatures.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Soot Sources in Warm-Up Conditions in a GDI Engine

2021-01-0622

View Details

TECHNICAL PAPER

Implementation of a Fuel Spray Wall Interaction Model in KIVA-II

911787

View Details

TECHNICAL PAPER

A Superalloy Low Heat Rejection Engine with Conventional Lubrication

961743

View Details

X