Browse Publications Technical Papers 2020-01-0212
2020-04-14

Research on Yaw Stability Control of Unmanned Vehicle Based on Integrated Electromechanical Brake Booster 2020-01-0212

The Electromechanical Brake Booster system (EMBB) integrates active braking and energy recovery and becomes a novel brake-by-wire solution that substitutes the vacuum booster. While the intelligent unmanned vehicle is in unstable state, the EMBB can improve the vehicle yaw stability more quickly and safely. In this paper, a new type of integrated EMBB has been designed, which mainly includes two parts: servo motor unit and hydraulic control unit. Aiming at the dynamic instability problem of intelligent unmanned vehicle, a three-layer vehicle yaw stability control structure including decision layer, distribution layer and execution layer is proposed based on integrated EMBB. Firstly, the decision layer calculates the ideal yaw rate and the side slip angle of the vehicle with the classic 2DOF vehicle dynamics model. The boundary of the stable region is determined by the phase plane method and the additional yaw moment is determined by the feedback PI control algorithm. Secondly, the distribution layer optimally selects the wheel with the highest differential braking efficiency and assigns the brake pressure to the corresponding wheel based on the additional yaw moment calculated by the decision layer. In the execution layer, the servo motor unit employs the position-current double closed-loop PI algorithm to achieve rapid building-up pressure and then precise control of the single-wheel pressure is achieved by controlling the electromagnetic valve of the hydraulic unit. Finally, with the dSPACE products, we built the hardware-in-the-loop (HIL) test bench based on integrated EMBB. The proposed control strategy is verified by using Similator to run CarSim in real-time and MicroAutoBox to run the algorithm. The HIL experiment results show that the yaw stability control algorithm based on integrated EMBB can effectively restore the unstable vehicle to the stable driving zone and enhance the driving safety of the complete vehicle.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
Book
BOOK

Generalized Vehicle Dynamics

View Details

TECHNICAL PAPER

Stability Enhancement of a Light Commercial Vehicle Using Active Steering

2006-01-1181

View Details

TECHNICAL PAPER

Torque Vectoring Axle and Four Wheel Steering: A Simulation Study of Two Yaw Moment Generation Mechanisms

2006-01-0819

View Details

X