Browse Publications Technical Papers 2020-01-0204
2020-04-14

Lightweight Design of Automotive Front End Material-Structure Based on Frontal Collision 2020-01-0204

The front end structure is an important role in protecting the vehicle and passengers from harm during the collision. Increasing its protective capacity can be achieved by increasing the thickness or replacing high-strength materials. Most of the current research is analyzed separately from these two aspects. This paper proposes a multi-objective optimization method based on weighting factor analysis, which combines material and thickness selection. Firstly, the optimized components are determined based on the 100% frontal collision simulation results. Secondly, six thicknesses and two materials of the front part of the vehicle body are selected as design variables to construct an orthogonal test design. In this paper, a weight-based multi-factor optimization method is used to numerically analyze the response results obtained by orthogonal experiments. Analyze the impact of each factor on the optimization goal to select the most reliable optimization. This optimization method can select the best material and component thickness combination scheme. The results show that the mass of the selected parts are reduced by 16.5%; the total energy absorption is increased by 5.2%; the intrusion in the dash is reduced by 8.9%; and the peak acceleration of the B-pillar is reduced by 39.2%.The material-structure integration optimization method is an effective method to solve the contradiction between lightweight and crashworthiness.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Binder Design for Automotive Body Panels

960822

View Details

TECHNICAL PAPER

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-01-1204

View Details

COLLECTION

Advanced Analysis, Design, and Optimization for Materials, Restraints, and Structures for Enhanced Automotive Safety and Weight Reduction, 2017

COLL-TP-00580

View Details

X