Browse Publications Technical Papers 2020-01-0159
2020-04-14

Investigate Partial Cabin Air Recirculation Strategy to Improve HVAC System’s Heating Performance Using 1D Simulation 2020-01-0159

In cold weather conditions, cabin heating performance is critical for retaining the thermal comfort. Heat is absorbed from the engine by circulating coolant through the engine water jacket and same will be rejected by the heater core. A variable speed blower is used to transfer heat from the heater core to the passenger compartment through floor ducts. The time taken to achieve comfortable cabin temperature determines the performance and capacity of heating ventilating and air conditioning (HVAC) system. In current automotive field, the engine options are provided to customers to meet their needs on the same vehicle platforms. Hence few engine variants cannot warm the cabin up to customer satisfaction. To improve the existing warm up performance of system, Positive thermal coefficient heater (PTC), electric coolant PTC heater, auxiliary pump etc. can be used which increases the overall cost of the vehicle.
During warmup, HVAC system operates in 100% fresh mode. In this study, Partial cabin recirculation is investigated to understand the effect on the cabin warmup. In order to demonstrate this phenomenon, a one dimensional (1D) modelling approach is used for simulation and predicted the performance of different percentage of partial cabin air recirculation. Baseline correlation simulation is done with vehicle test data to reproduce the same test conditions in 1D software. Model output parameters such as floor duct outlet air temperature, Cabin warmup temperature are correlated at 0% partial recirculation in other words 100% fresh mode. By increasing the partial recirculation at each simulation run, increase in the floor duct outlet air temperatures is observed and witnessed through 1D model. This strategy can be applied to upcoming vehicle to improve the cabin warmup performance without any additional cost.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development of the Defrost Performance Evaluation Technology in Automotive Using Design Optimization Analysis Method

2020-01-0155

View Details

TECHNICAL PAPER

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-01-1258

View Details

TECHNICAL PAPER

Design and Implementation of a Thermal Load Reduction System for a Hyundai Sonata PHEV for Improved Range

2018-01-1186

View Details

X