Browse Publications Technical Papers 2019-28-2492
2019-11-21

Testing Electric Vehicle Sub-Systems Using Low Cost Programmable Electronic Load 2019-28-2492

The advancements in Electric Vehicles have introduced many complex sub-systems with demanding and sporadic power needs. For example, the current consumed by electric motor or bank of super-capacitors involve transients making them non-linear loads. Conventional test systems for load analysis mainly involved resistive loads where the rate of rise or fall of current was linear, falling short to accommodate the dynamic behavior of the Electric Vehicle loads. In this paper, we have proposed a low cost; yet effective electronic load that is independent of the battery voltage and can sink the current in any prescribed pattern with respect to time. The simulation results have shown the effectiveness of the hardware with respect to changes in temperature, aging and sudden input fluctuations. The implemented electronic load is interfaced to a desktop application to program the dynamic load behavior and the test duration. The same interface can act as data logger for long duration environmental and longevity tests. The indigenous system has proven quite useful for design validation tests and during End-of-Line testing of systems like DC-DC convertors and Battery chargers.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Sensorless On Board Cell Temperature Control for Fast Charging

2019-01-0791

View Details

TECHNICAL PAPER

Battery cell modeling for energy and power estimations in a battery pack applied to a HEV

2019-36-0243

View Details

STANDARD

Vehicle Power Test for Electrified Powertrains

J2908_201709

View Details

X