Browse Publications Technical Papers 2019-26-0127
2019-01-09

BEV Range: Challenges for Indian Driving Conditions 2019-26-0127

India is rapidly transitioning to environment friendly green mobility technology. This is evident from leapfrog move to Bharat Stage VI stringent emissions norms, by just providing a mere window of three years to the automotive industry. The challenge is not to manufacture new subsystems but is getting customized emission solution technology tested and validated for Indian conditions to meet BSVI emission norms by April 2020. With reference to recent reports published by NITI Aayog (Government of India Think Tank), xEV’s can be incentivized and promoted as an emission free solution. With internal combustion engine complex architectures to meet BSVI emission norms and proposed government incentive, many passenger car OEM’s are considering electric vehicle (EV) powertrain development.
In view of this, a study was envisaged to estimate EV powertrain challenges for Pune (India) city real world driving conditions. Test data such as vehicle speed, engine speed was measured on conventional passenger car using data acquisition system for city routes. A conventional powertrain simulation model was developed using Ricardo IGNITE® which was then validated for MIDC fuel economy. An equivalent EV powertrain architecture such as motor rating, HV battery size was identified to maintain traction power, speed and electric range of 100 km. This identified EV architecture was implemented in simulation model along with battery thermal management & regenerative braking strategy. The EV simulation model was used to predict fuel and hence CO2 savings for MIDC and real-world drive condition. The study of Effect of real world driving conditions on range was also carried out.
It was observed that electric vehicle is viable option for CO2 savings. Real world driving conditions impacts electric range mostly due to traffic conditions requiring repeated acceleration and braking events.
This study could not focus on driving conditions observed in other Indian cities such as Mumbai, Delhi, etc. where driving pattern may be different. Also, this study has not considered PHEV architecture as it is the most complex in terms of hardware as well as controls.
Study concludes that EV architectures are specific to application and driving conditions. A range of 100 km on one route can’t assure similar range for another route. Battery thermal management will present a trade-off to maintain EV range and battery life.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Fuel Consumption and Energy Balance of “Optimized CVT-Hybrid-Driveline”

2006-01-3259

View Details

JOURNAL ARTICLE

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-01-1266

View Details

TECHNICAL PAPER

Thermal Management Architectures Virtual Evaluation for HEV/PHEV

2018-37-0025

View Details

X