Browse Publications Technical Papers 2019-01-2265
2019-12-19

A Gas Separation Membrane Highly Selective to CO 2 in the Exhaust of Internal Combustion Engines 2019-01-2265

Southwest Research Institute has developed a passive, flow-through, membrane which separates carbon dioxide (CO2) from other exhaust gas species. Stoichiometric exhaust gas for 0% ethanol fuels contain approximately 14% CO2 by concentration. The membrane consists of a ceramic substrate impregnated with lithium zirconate (Li2ZrO3). In the presence of temperatures of 400-600 °C the CO2 reacts with lithium zirconate to form lithium carbonate (Li2CO3). The new compound moves from the inner surface of the membrane via partial pressure gradient to the outer wall of the membrane and desorbs into a low concentration CO2 environment, e.g. atmospheric air with 400 ppm CO2. SwRI has tested the membrane under engine-like conditions, comparable to 2000 rpm 10 bar BMEP operation, on a standalone burner rig (ECTO-lab burner). On the SwRI ECTO-lab burner rig temperature, flow-rate and exhaust gas products can be independently varied. Results confirmed that the 150 mm membrane section could selectively reduce the CO2 concentration by 5% from the inlet to the outlet of the membrane. Tests were also performed under rich exhaust conditions with increased carbon monoxide (CO) concentrations and determined that the membrane preferentially separates CO vs CO2. The membrane design and fabrication are discussed in the paper along with potential applications for the technology, namely as a method to alter exhaust-gas recirculation composition for improved performance.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X