Browse Publications Technical Papers 2019-01-1105
2019-04-02

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster 2019-01-1105

To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink. Then, to quickly verify the development algorithm in more real environment, dual dSPACE hardware tools are used to build a rapid control prototype (RCP) real-time test platform to create operational scenarios, in which MicroAutoBox-II is served as the "controller" and dSPACE HiL simulator is served as the actuator. With the help of the accurate model of the Ebooster mechanism and hydraulic system, the real-time analysis, verification and improvement of the developed PMSM algorithm can be realized through the test bench to improve development efficiency and save development cost. Finally, the experimental results show that the developed algorithm can achieve well control of the PMSM of the Ebooster.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Real-Time Hardware-in-the-Loop Simulation for Drivability Development

2017-01-0005

View Details

TECHNICAL PAPER

Quartz Angular Rate Sensor for Automotive Application

1999-01-0934

View Details

TECHNICAL PAPER

SOME NOTES ON BRAKE DESIGN AND CONSTRUCTION1

230040

View Details

X