Browse Publications Technical Papers 2019-01-1104
2019-04-02

Pressure Optimization Control of Electro-Mechanical Brake System in the Process of ABS Working 2019-01-1104

The electro-mechanical brake booster (EMBB) and hydraulic control unit (HCU) constitute the electro-mechanical brake system, which can meet the requirements of brake system for intelligent vehicles. It does not need vacuum source, provides active braking function, have high control accuracy and fast response. But it has two electronic control units (ECU), which need coordinated control. When ABS is triggered, the pressure of the master cylinder keeps rising and falling, and the pressure fluctuates greatly. This will lead to noise and reduce the durability of the system. In this paper, a pressure optimization control strategy under ABS condition is proposed. Firstly, the structure and control strategy of EMBB are introduced. Secondly, the braking characteristics without pressure optimization control are analyzed. Thirdly, based on the demand of maximum cylinder pressure, a three-closed-loop pressure optimization control strategy is established. Finally, based on the Hardware-In-the-Loop platform, the control strategy is verified. HIL test shows that the strategy can effectively reduce the pressure fluctuation of the master cylinder when triggered by ABS, while ensuring the control performance of ABS.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
STANDARD

Agricultural and Forestry Off-Road Machinery Control and Communication Network

J1939/2_201901

View Details

STANDARD

Honda Diagnostic Serial Data Link Protocol - ABS/VSA System

J2809_201710

View Details

TECHNICAL PAPER

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

930505

View Details

X