Browse Publications Technical Papers 2018-22-0004
2018-11-12

Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts 2018-22-0004

Despite safety advances, thoracic injuries in motor vehicle crashes remain a significant source of morbidity and mortality, and rib fractures are the most prevalent of thoracic injuries. The objective of this study was to explore sources of variation in rib structural properties in order to identify sources of differential risk of rib fracture between vehicle occupants. A hierarchical model was employed to quantify the effects of demographic differences and rib geometry on structural properties including stiffness, force, displacement, and energy at failure and yield. Three-hundred forty-seven mid-level ribs from 182 individual anatomical donors were dynamically (~2 m/s) tested to failure in a simplified bending scenario mimicking a frontal thoracic impact. Individuals ranged in age from 4 - 108 years (mean 53 ± 23 years) and included 59 females and 123 males of diverse body sizes. Age, sex, body size, aBMD, whole rib geometry and cross-sectional geometry were explored as predictors of rib structural properties. Measures of cross-sectional rib size (Tt.Ar), bone quantity (Ct.Ar), and bone distribution (Z) generally explained more variation than any other predictors, and were further improved when normalized by rib length (e.g., robustness and WBSI). Cortical thickness (Ct.Th) was not found to be a useful predictor. Rib level predictors performed better than individual level predictors. These findings moderately explain differential risk for rib fracture and with additional exploration of the rib’s role in thoracic response, may be able contribute to ATD and HBM development and alterations in addition to improvements to thoracic injury criteria and scaling methods.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Impacts on Plates, Particularly Glass Plates

670924

View Details

TECHNICAL PAPER

The Effectiveness of Belt Systems in Frontal and Rollover Crashes

770148

View Details

TECHNICAL PAPER

Simulated Automotive Side Impact on the Isolated Human Pelvis: Phase I: Development of a Containment Device Phase II: Analysis of Pubic Symphysis Motion and Overall Pelvic Compression

973321

View Details

X