Browse Publications Technical Papers 2018-01-1384
2018-04-03

The Effect of the Cell Shape on Compressive Mechanical Behavior of 3D Printed Extruded Cross-sections 2018-01-1384

Additive manufacturing has been a promising technique for producing sophisticated porous structures. The pore's architecture and infill density percentage can be easily controlled through additive manufacturing methods. This paper reports on development of sandwich-shape extruded cross sections with various architecture. These lightweight structures were prepared by employing additive manufacturing technology. In this study, three types of cross-sections with the same 2-D porosity were generated using particular techniques. a) The regular cross section of hexagonal honeycomb, b) the heterogeneous pore distribution of closed cell aluminum foam cross section obtained from image processing and c) linearly patterned topology optimized 2-D unit cell under compressive loading condition. The optimized unit cell morphology is obtained by using popular two-dimensional topology optimization code known as 99-line code, and by having the same volume fraction as the heterogeneous foam. The upper edge of the unit cell was under distributed uniform loading, and the lower edge was fixed. All the cross sections have the same cavity to wall area ratio on their 2-D configuration. The samples are extruded to produce 3-D CAD model of sandwich shape porous structures. The different samples are tested with universal compression machine and mechanical characteristics of the models are investigated. Furthermore, the energy absorption efficiency and load bearing capability of samples are studied. The results of the experimental procedure are compared to numerical simulations under quasi-static condition.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X