Browse Publications Technical Papers 2018-01-1308
2018-04-03

Thermodynamic Modeling of Blade Cooled Turboprop Engine Integrated to Solid Oxide Fuel Cell: A Concept 2018-01-1308

In modern turboprop engines, reduction in emission and fuel consumption is the primary goals during the development of gas turbine aero engines. In this paper, a concept has been proposed for hybridizing the air blade cooled turboprop engines by integrating it with a fuel cell. The proposed study focuses on thermodynamic analysis of a turboprop engine integrated to a solid oxide fuel cell (SOFC) system. A solid oxide fuel cell is the perfect candidate for utilizing waste heat available at turboprop engine exhaust, through recuperation process. Integration of SOFC is ultimately leads to enhancement the overall performance of the turboprop-SOFC hybrid system. Power generated by the SOFC system can be utilized by the aircraft and in can complement the auxillary-power-unit (APU) and may even supplement it. On the basis of 1st and 2nd law of thermodynamic modeling analysis of a turboprop-SOFC system has been presented in this article. The adopted turboprop engine has operated under a wide range of operating conditions. Parametric analysis has been performed, to investigate the influence of various parameters such as compressor pressure ratio, turbine inlet temperature, air flow rate on the turboprop-SOFC hybrid system. The thermodynamic losses within each component of the hybrid system have been evaluated by the energy and exergy analysis. From the parametric analysis, it has been observed that the performance of a hybrid turboprop-SOFC system can be increased significantly by about 12-13%, when TIT increases. Moreover, the exergy destruction within the fuel cell eventually decreases as air flow rate increases, whereas in combustor the exergy destruction linearly increases with increase in air flow rate. The integration of SOFC with turboprop engine has immense potential in advancing turboprop technology, which results in developing efficient and sustainable hybrid systems for long-range transport aircraft.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Simulation Analysis of Environmental Adaptability of High Pressure Fuel Cell Engine Air Supply System

2018-01-1306

View Details

TECHNICAL PAPER

Dynamics of Water Crossover in Fuel Cell and Application to Freeze Driveaway Reliability

2020-01-0853

View Details

TECHNICAL PAPER

Ceramic Gas Turbine Hybrid Power System

952765

View Details

X