Browse Publications Technical Papers 2018-01-1076
2018-04-03

A Study of Automatic Allocation of Automotive Safety Requirements in Two Modes: Components and Failure Modes 2018-01-1076

ISO 26262 describes a safety engineering approach in which the safety of a system is considered from the early stages of design through a process of elicitation and allocation of system safety requirements. These are expressed as automotive safety integrity levels (ASILs) at system level and are then progressively allocated to subsystems and components of the system architecture. In recent work, we have demonstrated that this process can be automated using a novel combination of model-based safety analysis and optimization metaheuristics. The approach has been implemented in the HiP-HOPS tool, and it leads to optimal economic decisions on component ASILs. In this paper, first, we discuss this earlier work and demonstrate automatic ASIL decomposition on an automotive example. Secondly, we describe an experiment where we applied two different modes of ASIL decomposition. In HiP-HOPS, it is possible to decompose ASILs either to the safety requirements of components or individual failure modes of components. Protection against independent failure modes could, in theory, be achieved at different ASILs and this will lead to reduced design costs. Although ISO26262 does not explicitly support this option, we have studied the implications of this more refined decomposition on system costs but also on the performance of the decomposition process itself, and we report on the results. Finally, motivated by our study on ASIL decomposition, we discuss the general need for increased automation of safety analysis in complex systems, especially autonomous systems where an infinity of possible operational states and configurations makes manual analysis infeasible.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

FMVSS 121 Simulation

982237

View Details

TECHNICAL PAPER

Crashworthiness Simulations Comparing PAM-CRASH and LS-DYNA

2004-01-1174

View Details

TECHNICAL PAPER

AI Enhanced Methods for Virtual Prediction of Short Circuit in Full Vehicle Crash Scenarios

2020-01-0950

View Details

X