Browse Publications Technical Papers 2018-01-0529
2018-04-03

Further Validation of Equations for Motorcycle Lean on a Curve 2018-01-0529

Previous studies have reported and validated equations for calculating the lean angle required for a motorcycle and rider to traverse a curved path at a particular speed. In 2015, Carter, Rose, and Pentecost reported physical testing with motorcycles traversing curved paths on an oval track on a pre-marked range in a relatively level parking lot. Several trends emerged in this study. First, while theoretical lean angle equations prescribe a single lean angle for a given lateral acceleration, there was considerable scatter in the real-world lean angles employed by motorcyclists for any given lateral acceleration level. Second, the actual lean angle was nearly always greater than the theoretical lean angle.
This prior study was limited in that it only examined the motorcycle lean angle at the apex of the curves. The research reported here extends the previous study by examining the accuracy of the lean angle formulas throughout the curves. The degree to which these equations can be used to model the development of lean as the rider enters a curve is evaluated. The prior study was also limited in that it only examined maneuvers on an oval track in a flat parking lot. The current study examines the accuracy of the theoretical lean angle formulas on a mountainous highway with curves of varying radius and changing banking and slope. The real-world data presented in this study are also utilized in conjunction with the lean angle formula to examine the interplay between the geometry of a curve, the motorcycle speed, and the rider’s skill level.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

An Investigation into the Disruption of Circadian Rhythms using Blue Light for Automotive Applications

2015-01-1706

View Details

TECHNICAL PAPER

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-01-1788

View Details

TECHNICAL PAPER

The Driving Simulator with Large Amplitude Motion System

910113

View Details

X