Browse Publications Technical Papers 2017-01-0529
2017-03-28

Investigation of Species from Negative Valve Overlap Reforming Using a Stochastic Reactor Model 2017-01-0529

Fuel reforming during a Negative Valve Overlap (NVO) period is an effective approach to control Low Temperature Gasoline Combustion (LTGC) ignition. Previous work has shown through experiments that primary reference fuels reform easily and produce several species that drastically affect ignition characteristics. However, our previous research has been unable to accurately predict measured reformate composition at the end of the NVO period using simple single-zone models. In this work, we use a stochastic reactor model (SRM) closed cycle engine simulation to predict reformate composition accounting for in-cylinder temperature and mixture stratification. The SRM model is less computationally intensive than CFD simulations while still allowing the use of large chemical mechanisms to predict intermediate species formation rates. By comparing model results with experimental speciation data from a single-cylinder engine, the presented work provides insight into the thermodynamic and kinetic processes that occur during in-cylinder fuel reformation. Three single-component fuels (iso-octane, n-heptane and ethanol) were modeled as a function of assumed thermal stratification. Across thermal stratification levels, the modeled reformate concentrations match well with measured values though they are very sensitive to initial conditions. The relationship between thermal stratification and resulting reformed species provides insight into the effect of non-homogeneity on products and illustrates the value of SRM over homogeneous reactor models to inexpensively predict in-cylinder processes.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-01-0780

View Details

TECHNICAL PAPER

Development of Multi-Zone Phenomenological Model for SI Engine

2014-01-1068

View Details

JOURNAL ARTICLE

Efficiency and Emissions Characteristics of an HCCI Engine Fueled by Primary Reference Fuels

2018-01-1255

View Details

X