Browse Publications Technical Papers 2016-36-0210
2016-10-25

Topologycal Optimization Applied to Design of an Automotive Hood 2016-36-0210

The numerical simulation is currently an essential tool in the automotive engineering because it is possible in the virtual stage of product development to evaluate the performance of a component in the level of stress that would it be submitted, as well as evaluating displacement, natural frequency, stiffness and to the feasibility of manufacturing. Due to the stringent emission standards and pollutant, as well as sustainability guidelines, the goal of any automotive design is always seeking the maximum structural performance with minimal possible mass. This premise leads directly to a numerical optimization problem, that seeks the maximum (or minimum) of a function, subject to several constraints. Numerical optimization techniques can be divided mainly into: shape optimization, parametric optimization and topology optimization. In order to relieve mass during the process of forming it is common to perform a cutting operation to remove material in parts that are less required. In theory, this is characterized in a typical topology optimization problem, which consists in "holes" on the part topology, so as to remove the mass as possible without significant loss of performance. Thus, this work consisted of using topology optimization techniques to design the internal panel of a hood (hood inner panel) that provides the maximum ratio stiffness / mass to the entire hood. The results were compared with default settings found on the market and in which were evaluated the torsional stiffness, maximum stress, and natural frequencies. The results showed that the use of topology optimization for sheet metal forming are feasible and promising.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Multi-Objective Optimization of Sheet Metal-Polymer Hybrids Manufactured by the Integrated Process of Deep Drawing-Back Injection Molding

2020-01-0622

View Details

TECHNICAL PAPER

Optimum Gap Design And Durability Analysis of Catalytic Converter Assembly

2001-01-0942

View Details

TECHNICAL PAPER

Pem Fuel Cell Performance Under Particular Operating Conditions Causing the Production of Liquid Water: A Morphing on Bipolar Plate's Channels Approach

2011-01-1349

View Details

X