Browse Publications Technical Papers 2016-01-1465
2016-04-05

The Use of Stationary Object Radar Sensor Data from Advanced Driver Assistance Systems (ADAS) in Accident Reconstruction 2016-01-1465

As a result of the development of Event Data Recorders (EDR) and the recent FMVSS regulation 49 CFR 563, today’s automobiles provide a limited subset of electronic data measurements of a vehicle’s state before and during a crash. Prior to this data, the only information available about the vehicle movements before or during a collision had come from physical evidence (e.g. tire marks), witnesses, aftermarket camera systems on vehicles, and ground-based cameras that were monitoring vehicle traffic or used for security surveillance. Today’s vehicles equipped with Advanced Driver Assistance Systems (ADAS) have vehicle-based sensors that measure information about the environment around a vehicle including other vehicles, pedestrians, and fixed wayside objects. Vehicles equipped with these ADAS systems use primarily radar, lidar, ultrasonic, and/or image sensors either in standalone operation or in combination to establish the range and movement of potential hazardous objects (e.g. other vehicles, poles, and pedestrians) around a vehicle. The data from these sensors is unique because it measures objective environment information surrounding a vehicle, which can play a role in reconstructing and understanding the contributing factors of an accident. As more vehicles become equipped with advanced safety systems and the requisite sensors for automated vehicles, accident investigators will need to become familiar with system functionality, the data that the sensors measure and may record, as well as the limitations of that data in order to effectively and accurately analyze a crash.
This paper reviews the sensors in ADAS collision avoidance systems that may be present on current vehicles and how the data from a vehicle based radar may be used to reconstruct a collision. A radar sensor mounted on a host vehicle is experimentally evaluated using stationary objects, and a stationary and moving radar. The results demonstrate how an investigator would use the radar data to recognize a fixed object in the environment and analyze the relative position with respect to the host vehicle. The analysis of this radar data includes the limitations, accuracy, and validation of the particular radar sensor data. In addition, the authors propose in general how data from radars could be used to elucidate the location of fixed objects in the environment surrounding a vehicle for the purpose of understanding an accident.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Accuracy and Validation of Geotab GPS Fleet Tracking Devices for Medium Duty Trucks

2022-01-0140

View Details

TECHNICAL PAPER

System Architecture for Cooperative Vehicle-Pedestrian Safety Applications Using DSRC Communication

2015-01-0290

View Details

STANDARD

Definitions and Experimental Measures Related to the Specification of Driver Visual Behavior Using Video Based Techniques

J2396_201705

View Details

X