Knock Prediction Using a Simple Model for Ignition Delay 2016-01-0702
An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations.
Citation: Kalghatgi, G., Morganti, K., Algunaibet, I., Sarathy, M. et al., "Knock Prediction Using a Simple Model for Ignition Delay," SAE Technical Paper 2016-01-0702, 2016, https://doi.org/10.4271/2016-01-0702. Download Citation
Author(s):
Gautam Kalghatgi, Kai Morganti, Ibrahim Algunaibet, Mani Sarathy, Robert Dibble
Affiliated:
Saudi Aramco, Kaust, KAUST
Pages: 13
Event:
SAE 2016 World Congress and Exhibition
ISSN:
0148-7191
e-ISSN:
2688-3627
Related Topics:
Knock
Gasoline
SAE MOBILUS
Subscribers can view annotate, and download all of SAE's content.
Learn More »