Browse Publications Technical Papers 2016-01-0610
2016-04-05

Port Design Criteria for 2-Stroke Loop Scavenged Engines 2016-01-0610

Interest in 2-stroke engines has been recently renewed by several prototypes, developed for the automotive and/or the aircraft field. Loop scavenging, with piston controlled ports is particularly attractive, but the configurations successfully developed in the past for motorbike racing (in particular, the 125cc unit displacement, crankcase pump engines), are not suitable for automotive applications. Therefore, new criteria are necessary to address the scavenging system design of the new generation of 2-stroke automobile/aircraft engines.
The paper reviews the transfer ports optimization of a loop scavenged 2-stroke cylinder, whose main parameters were defined in a previous study. The optimization has been carried by means of a parametric grid, considering 3 parameters (2 tilt angles, and the focus distance), and 3 different engine speeds (2000-3000-4000 rpm, assuming a Diesel engine). A set of scavenging CFD-3d simulations have been performed by using a customized version of KIVA-3V. The numerical approach was experimentally calibrated in a previous project (see appendix 1)
The simulations results are presented by means of maps showing the influence of the geometrical parameters on the main scavenging coefficients.
Finally, a refined mesh has been constructed for the optimum configuration found in the previous parametric analysis, and a set of multi-cycle simulations have been performed. The results demonstrated the very good efficiency of the scavenging process, close to a perfect displacement for delivery ratio up to 1.5, or for residuals fraction higher than 50%

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Design of a Fuel-Efficient Two-Stroke Diesel Engine for Medium Passenger Cars: Comparison between Standard and Reverse Uniflow Scavenging Architectures

2017-01-0645

View Details

TECHNICAL PAPER

Analytically Predicted improvements in the Scavenging and Trapping Efficiency of Two-Cycle Engines

880108

View Details

TECHNICAL PAPER

Real-Time Measurement of Engine Oil Economy

871913

View Details

X