Browse Publications Technical Papers 2015-01-2609
2015-09-15

Optimization of Spatially Varying Fiber Paths for a Symmetric Laminate with a Circular Cutout under Remote Uniaxial Tension 2015-01-2609

Minimizing the stress concentrations around cutouts in a plate is often a design problem, especially in the Aerospace industry. A problem of optimizing spatially varying fiber paths in a symmetric, linear orthotropic composite laminate with a cutout, so as to achieve minimum stress concentration under remote unidirectional tensile loading is of interest in this study. A finite element (FE) model is developed to this extent, which constraints the fiber angles while optimizing the fiber paths, proving essential in manufacturing processes. The idea to be presented could be used to derive fiber paths that would drastically reduce the Stress Concentration Factor (SCF) in a symmetric laminate by using spatially varying fibers in place of unidirectional fibers. The model is proposed for a four layer symmetric laminate, and can be easily reproduced for any number of layers. The FE model suggested would also let us use a reduced number of optimization variables, for in this case of a four layer symmetric laminate, only six optimization variables need to be defined to obtain the optimum fiber distribution to attain minimum SCF around the circular cutout. By ensuring continuity in the FE model, discrete fiber angles within each element in a single layer can be easily smoothed out to obtain the optimal fiber path.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Damage Analysis of Composite Laminates

2019-28-0092

View Details

TECHNICAL PAPER

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-26-0278

View Details

TECHNICAL PAPER

Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Structures under Loading Uncertainties

2019-01-0709

View Details

X