Browse Publications Technical Papers 2015-01-1624
2015-04-14

Individual Cylinder Control for Air-Fuel Ratio Cylinder Imbalance 2015-01-1624

Recently emissions regulations are being strengthened. An air-fuel ratio cylinder imbalance causes emissions to increase due to universal exhaust gas oxygen (UEGO) sensor error or exhaust gas oxygen (EGO) sensor error. Various methods of reducing an air-fuel ratio cylinder imbalance have been developed. It is preferable for a control system to operate over a wide range of conditions. Our target is to expand the operating conditions from idling to high load conditions.
Our approach is to use both an UEGO sensor and a crank angle sensor. A two-revolution frequency component calculated from the UEGO sensor output signal and angular acceleration calculated from the crank angle sensor output signal are used to identify the cylinder where the air-fuel ratio error occurs. The detection result using the UEGO sensor precedes the detection result using the crank angle sensor when the engine is operated under a high load because the detection accuracy of the method using the UEGO sensor is higher under these conditions. On the other hand, the result using the crank angle sensor precedes the result using the UEGO sensor when the engine is operated at low engine speeds because the detection accuracy using the crank angle sensor is higher under these conditions. Consequently, it is possible to expand the control operating conditions.
Experimental results using a real car showed that the developed control method operated under most of the conditions in the Japanese test cycle (JC08 Hot) and reduced NOx emissions by 90% compared with a car without the developed control method where an air-fuel ratio cylinder imbalance occurred.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Model-Based Fuel Injection Control System for SI Engines

961188

View Details

TECHNICAL PAPER

Model-Based Control and Cylinder-Event-Based Logic for an Ultra-Low Emissions Vehicle

970531

View Details

TECHNICAL PAPER

Closed Loop Control at Engine Management System MOTRONIC

880135

View Details

X