Browse Publications Technical Papers 2015-01-1058
2015-04-14

Numerical Modeling Study of Catalyst Surface Reactivity and Gas Diffusivity with Lean NO x Catalyst 2015-01-1058

Catalyst simulation, which can analyze the complicated reaction pathway of exhaust gas purifications and identify the rate-determining step, is an essential tool in the development of catalyst materials. This requires an elementary reaction model which describes the detailed processes, i.e. adsorption, decomposition, and others. In our previous work, the elementary reaction model on Pt/CeO2 catalyst was constructed. In this study, we focused on extending the Zeolite catalyst and including the gas diffusivity through the catalyst layer.
The reaction rate of a Zeolite catalyst was expressed by an Arrhenius equation, and the elementary reaction model was composed of 17 reactions. Each Arrhenius parameter was optimized by the catalytic activity measurements. The constructed model was validated with NOx conversion in cyclic experiments which were repeated with Lean phase (NOx adsorption) and Rich phase (NOx reduction). We were able to obtain good agreement between calculated and measured values.
The reaction model was extended to the honeycomb catalyst with two layers, Pt/CeO2 as the bottom layer and Zeolite as the top layer. The honeycomb catalyst performance was determined by gas diffusivity through the Zeolite into the Pt/CeO2, in addition to reactivity. For the Zeolite layer, the effective diffusion constant was expressed by Fick's law, and bulk diffusivity was estimated from the difference of reactivity with or without Zeolite. In some Zeolites, the calculation results showed that Beta (BEA) Zeolite had the highest NH3-SCR activity and gas diffusivity, and almost matched the experimental results. We were able to obtain an accurate elementary reaction model.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

New Physical and Chemical Models for the CFD Simulation of Exhaust Gas Lines: A Generic Approach

2002-01-0066

View Details

TECHNICAL PAPER

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

2001-01-0908

View Details

TECHNICAL PAPER

A Study of a Practical Numerical Analysis Method for Heat Flow Distribution in the Engine Compartment

931081

View Details

X