Browse Publications Technical Papers 2015-01-0383
2015-04-14

Achievement of Diesel Low Temperature Combustion through Higher Boost and EGR Control Coupled with Miller Cycle 2015-01-0383

Diesel engines generally tend to produce a very low level of NOx and soot through the application of Miller Cycle, which is mainly due to the low temperature combustion (LTC) atmosphere resulting from the Miller Cycle utilization. A CFD model was established and calibrated against the experimental data for a part load operation at 3000 r/min. A designed set of Miller-LTC combustion modes were analyzed. It is found that a higher boost pressure coupled with EGR can further tap the potential of Miller-LTC cycle, improving and expanding the Miller-LTC operation condition. The simulated results indicated that the variation of Miller timings can decrease the regions of high temperatures and then improve the levels and trade-off relationship of NOx and soot. The in-cylinder peak pressure and NOx emissions were increased dramatically though the problem of insufficient intake charge was resolved by the enhanced intake pressure that is equivalent to dual-stage turbo-charging. In addition, the positive effect of EGR can overwhelm the side effect of a high intake pressure on the in-cylinder peak pressures and NOx emissions, mitigating the mechanical load of diesel engines and improving the emission levels. Therefore the operation range of Miller-LTC cycle diesel engines was expanded to high load conditions, and the adaptability to variable operating conditions was enhanced through the optimization of Miller timings, high intake pressures and EGR ratios. However, the amount of BSFC in these cases couldn't be involved in this paper.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Comparison of Sensor Sets for Real-Time EGR Flow Estimation

2016-01-1064

View Details

JOURNAL ARTICLE

Emissions Reduction Potential of Extremely High Boost and High EGR Rate for an HSDI Diesel Engine and the Reduction Mechanisms of Exhaust Emissions

2008-01-1189

View Details

TECHNICAL PAPER

Predicting NOx Emissions and Effects of Exhaust Gas Recirculation in Spark-Ignition Engines

730475

View Details

X