Browse Publications Technical Papers 2014-01-2145
2014-09-16

Numerical and Experimental Measures of the Unmanned Aerial System UAS-S4 of Hydra Technologies 2014-01-2145

This article presents a structural analysis of the Unmanned Aerial System UAS-S4 ETHECATL. Mass, center of gravity position and mass moment of inertia are numerically determined and experimentally attested using the pendulum method.
To determine the mass moment of inertia, a bifilar torsion-type pendulum is used for the Z-axis and a simple pendulum for the X and Y axes [14]. A nonlinear dynamic model is developed for the rotational motion about the center of gravity (Gs) of the tested system, including the effects of large-angle oscillations, aerodynamic drag, viscous damping and additional mass effects.
MATLAB genetic algorithms are then used to obtain the values of mass moment of inertia that would validate the experimental data with the numerical results.
The experiment used data gathered by three sensors: an accelerometer, a gyroscope and a magnetometer. Therefore, a method is used to calibrate these three sensors.
For determining the accuracy of the method, the experimental results for an object of uniform density for which the moment of inertia is computed numerically from geometrical data, are presented. The experimental results obtained for the UAS-S4 ETHECATL are also presented and compared to the analytical predictions [13]. The experimental method gives, with respect to the numerical results, an error of 4.4% for the moment of inertia around the Z-axis and of 9.5% for the moment of inertia around the X and Y axes. In addition, the experimental results of UAS-S4 inertia validate the analytical predictions [13] with a relative error of 6.52% on average.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X