Browse Publications Technical Papers 2014-01-2079
2014-06-30

Discrete Flow Mapping - A Mesh Based Simulation Tool for Mid-to-High Frequency Vibro-Acoustic Excitation of Complex Automotive Structures 2014-01-2079

Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment. The computational cost of DFM is largely frequency independent making it possible to get results from the mid-to-high frequency regime. This tool will be important when considering the vibrational response of a structure as a whole moving away from modelling vibrations only in sub-parts of the mechanical body.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

An Efficient Method for Reliability Based Design Optimization

2004-01-1125

View Details

TECHNICAL PAPER

CAE Implementation in Structural Analysis of Motorcycle

871186

View Details

TECHNICAL PAPER

Automotive Cranking and Charging System Analysis Via Mixed Domain Simulation

970929

View Details

X