Browse Publications Technical Papers 2014-01-1504
2014-04-01

A Comparison of Fuel-Cut Ageing during Retardation and Fuel-Cut during Acceleration 2014-01-1504

The effect of various fuel-cut agings, on a Volvo Cars 4-cylinder gasoline engine, with bimetallic three-way catalysts (TWCs) was examined. Deactivation during retardation fuel-cut (low load) and acceleration fuel-cut (high load, e.g. gearshift or traction control) was compared to aging at λ=1. Three-way catalysts were aged on an engine bench comparing two fuel-cut strategies and their impact on of the life and performance of the catalysts. In greater detail, the catalytic activity, stability and selectivity were studied. Furthermore, the catalysts were thoroughly analyzed using light-off and oxygen storage capacity measurements. The emission conversion as a function of various lambda values and loads was also determined. Fresh and 40-hour aged samples showed that the acceleration fuel-cut was the strategy that had the highest contribution towards the total deactivation of the catalyst system. Also, the retardation fuel-cut was found to be detrimental to the catalyst system but not to the same extent as an acceleration fuel-cut. During the aging procedure, exotherms were observed at the fuel-cut and the intensity of these exotherms was increasing with the length of aging time. The growing exotherms could be explained by the decomposition of HC into C and H2 and their subsequent oxidation at lean conditions. Also, the fuel-cut-off temperature measurements demonstrated that the magnitude of those exotherms was related to the total number as opposed to the total length of the fuel-cut.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Zone Length Optimization to Improve PGM Utility

2014-01-1508

View Details

TECHNICAL PAPER

Cause and Effect of Reversible Deactivation of Diesel Oxidation Catalysts

2014-01-1518

View Details

TECHNICAL PAPER

Effect of Air-Fuel Ratio Modulation on Conversion Efficiency of Three-Way Catalysts

780607

View Details

X