Browse Publications Technical Papers 2014-01-0580
2014-04-01

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 2 Use of Dirty CAD Data with Modified Cartesian Grid Approach 2014-01-0580

The applicability of high-performance computing (HPC) to vehicle aerodynamics is presented using a Cartesian grid approach of computational fluid dynamics. Methodology that allows the user to avoid a large amount of manual work in preparing geometry is indispensable in HPC simulation whereas conventional methodologies require much manual work. The new frame work allowing a solver to treat ‘dirty’ computer-aided-design data directly was developed with a modified immersed boundary method. The efficiency of the calculation of the vehicle aerodynamics using HPC is discussed.
The validation case of flow with a high Reynolds number around a sphere is presented. The preparation time for the calculation is approximately 10 minutes. The calculation time for flow computation is approximately one-tenth of that of conventional unstructured code. Results of large eddy simulation with a coarse grid differ greatly from experimental results, but there is an improvement in the prediction of the drag coefficient prediction when using 23 billion cells.
A vehicle aerodynamics simulation was conducted using dirty computer-aided-design data and approximately 19 billion cells. The preparation for the calculation can be completed within a couple of hours. The calculation time for flow computation is approximately one-fifth of that of conventional unstructured code. Reasonable flow results around a vehicle were observed, and there is an improvement in the prediction of the drag coefficient prediction when using 19 billion cells. The possibility of the proposed methodology being an innovative scheme in computational fluid dynamics is shown.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
JOURNAL ARTICLE

Vehicle Aerodynamics Simulation for the Next Generation on the K Computer: Part 1 Development of the Framework for Fully Unstructured Grids Using up to 10 Billion Numerical Elements

2014-01-0621

View Details

TECHNICAL PAPER

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-01-0100

View Details

JOURNAL ARTICLE

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-01-1603

View Details

X