Browse Publications Technical Papers 2013-24-0123
2013-09-08

Temperature Estimation of Turbocharger Working Fluids and Walls under Different Engine Loads and Heat Transfer Conditions 2013-24-0123

Turbocharger performance maps, which are used in engine simulations, are usually measured on a gas-stand where the temperatures distributions on the turbocharger walls are entirely different from that under real engine operation. This should be taken into account in the simulation of a turbocharged engine. Dissimilar wall temperatures of turbochargers give different air temperature after the compressor and different exhaust gas temperature after the turbine at a same load point. The efficiencies are consequently affected. This can lead to deviations between the simulated and measured outlet temperatures of the turbocharger turbine and compressor. This deviation is larger during a transient load step because the temperatures of turbocharger walls change slowly due to the thermal inertia. Therefore, it is important to predict the temperatures of turbocharger walls and the outlet temperatures of the turbocharger working fluids in a turbocharged engine simulation.
In the work described in this paper, a water-oil-cooled turbocharger was extensively instrumented with several thermocouples on reachable walls. The turbocharger was installed on a 2-liter gasoline engine that was run under different loads and different heat transfer conditions on the turbocharger by using insulators, an extra cooling fan, radiation shields and water-cooling settings. The turbine inlet temperature varied between 550 and 850 °C at different engine loads.
The results of this study show that the temperatures of turbocharger walls are predictable from the experiment. They are dependent on the load point and the heat transfer condition of the turbocharger. The heat transfer condition of an onengine turbocharger could be defined by the turbine inlet temperature, ambient temperature, oil heat flux, water heat flux and the velocity of the air around the turbocharger. Thus, defining the heat transfer condition and rotational speed of the turbocharger provides temperatures predictions of the turbocharger walls and the working fluids. This prediction enables increased precision in engine simulation for future work in transient operation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Development and Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide in Closed-Loop Air Revitalization Systems

2005-01-2941

View Details

STANDARD

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

ARP1702B

View Details

TECHNICAL PAPER

A Comparison of the Entropy of Thermal Radiation to that of Heat Conduction

1999-01-2672

View Details

X