Browse Publications Technical Papers 2013-01-0379
2013-04-08

Dry Sliding Wear Behavior of Al-B 4 C Particulate Reinforced Composites Produced by Powder Metallurgy Method 2013-01-0379

Metal Matrix Composites (MMCs) have been widely investigated and applied due to their advantages of improved strength, stiffness and increased wear resistance over the unreinforced alloys in automobile industries. MMCs are the type of materials which can be designed to combine the strength, ductility and formability of metallic alloys with the non-metallic compounds such as silicon carbide, aluminum oxide and boron carbide. This paper investigates dry sliding wear behavior of aluminum (Al) matrix (MMCs) reinforced with different amounts (3, 6, and 9 wt%) of B₄Cp processed using pressureless sintering at 550°C under argon atmosphere. Wear tests were performed on a pin-on-disk configuration against SAE 1040 steel counter body under constant load and sliding speed. The relationship between wear resistance and wear mechanism were investigated. The influence of wetting characteristics of B₄Cp by the matrix was also evaluated. Worn surfaces of composites were characterized by scanning electron microscopy (SEM) technique in order to identify dominant wear mechanism of the produced composite material. Microstructural studies conducted on the composites indicated that homogeneous distribution of the B₄C particles in the Al matrix and a good interface between them had been achieved. According to pin on disc wear test results wear resistance of composite increased with increasing B₄C particle content.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Optimisation of Process Parameters of EDM on Al6082/SiC Metal Matrix Composite

2016-01-0533

View Details

TECHNICAL PAPER

Development of an Inexpensive, Highly Wear-Resistant Ceramic Cam Follower - Part 1 Engine Test Results

931933

View Details

TECHNICAL PAPER

An Advanced Aluminum-Tin-Silicon Engine Bearing Alloy and its Performance Characteristics

950953

View Details

X