Browse Publications Technical Papers 2012-01-1233
2012-04-16

Modeling and Simulation of a PEM Fuel Cell (PEMFC) Used in Vehicles 2012-01-1233

Fuel cell technology is recently becoming one of the most interesting fields for the car companies to invest in. This interest is because of their high efficiency and zero environmental pollution. Polymer electrolyte membrane fuel cells (PEMFC) are the most appropriate type of fuel cells for use in vehicles due to their low performance temperature and high power density.
Air and fuel mass flow rate and partial pressure, fuel cell stack temperature, relative humidity of fuel cell membrane and heat and water management are the effective parameters of fuel cell power systems.
Good transient behavior is one of the important factors that affect the success of fuel cell vehicles. In order to avoid stack voltage drop during transient condition, the control system of fuel cell vehicle is required to preserve optimal temperature, membrane hydration and partial pressure of reactants across the membrane. In this paper, we developed a dynamic model for fuel cell power system. The compressor dynamic, supply and return manifold filling dynamics (anode and cathode), membrane hydration and time-evolving reactant partial pressure are the most significant parameters in transient and steady state of system. The effects of membrane humidity, varying inlet air pressure, and compressor performance condition on the generated power is studied in this paper.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Modeling and Simulation of a PEM Fuel Cell Engine

2008-01-1799

View Details

MAGAZINE

Automotive Engineering: December 1, 2015

15AUTD12

View Details

TECHNICAL PAPER

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-01-1226

View Details

X