Browse Publications Technical Papers 2012-01-0663
2012-04-16

Geometry-Resolved Electro-Chemistry Model of Li-Ion Batteries 2012-01-0663

The paper presents a simulation approach to Li-Ion batteries based on geometrically resolved electrodes. This means that solid particles and the space occupied by electrolyte are not overlapping but are represented by contiguous, arbitrarily shaped volumes. The solid-electrolyte interface is explicitly resolved and thus allows detailed modeling of electro-chemical processes that are essential for studying performance of the battery cell. Finite volume method is used to solve the equations governing the mass and thermal energy conservation in solid and electrolyte, as well as the distribution of electric potential. The solution domain is discretized in contiguous control volumes of arbitrary polyhedral shape, with conformal interface between solid and fluid regions. Butler-Volmer equation is used to describe the kinetics of solid-electrolyte interface. For the time being, representative geometries of electrodes are manufactured using CAD-tools, but real geometries obtained using scanning methods will be used in future. One example application is presented and the results are compared to those obtained using a widely accepted one-dimensional method.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Temperature Control Characteristics of Automotive Power Battery Based on R-1233zd(E)’s Flowing Phase Change Heat Transfer

2018-01-1191

View Details

TECHNICAL PAPER

Thermal Management of Power Batteries for Electric Vehicles Using Phase Change Materials: A Review

2016-01-1204

View Details

TECHNICAL PAPER

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-01-0071

View Details

X