Browse Publications Technical Papers 2012-01-0657
2012-04-16

Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices 2012-01-0657

Harmonic Compensated Synchronous Detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

The Performance Effects of Edge-Based Heat Transfer on Lithium-Ion Pouch Cells Compared to Face-Based Systems

2014-01-1866

View Details

TECHNICAL PAPER

Requirements and Norms of SLI-Batteries in the North European Climate

890015

View Details

TECHNICAL PAPER

Research Submarines with Minimal Ocean Disturbance

690028

View Details

X