Browse Publications Technical Papers 2011-22-0016
2011-11-07

Muscular Response to Physiologic Tensile Stretch of the Caprine C5/6 Facet Joint Capsule: Dynamic Recruitment Thresholds and Latencies 2011-22-0016

This study examined the cervical muscle response to physiologic, high-rate (100 mm/s) tensile facet joint capsule (FJC) stretch. Six in-vivo caprine C5/6 FJC preparations were subjected to an incremental tensile loading paradigm. EMG activity was recorded from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels; and from the sternomastoid (SM) and longus colli (LC) muscle groups bilaterally at the C5/6 level; during FJC stretch. Capsule load during the displacement applications was recorded via a miniature load cell, and 3D capsule strains (based on stereoimaging of an array of markers on the capsule surface) were reconstructed using finite element methods. EMG traces from each muscle were examined for onset of muscular activity. Capsule strains and loads at the time of EMG onset were recorded for each muscle, as was the time from the onset of FJC stretch to the onset of muscle activity. All muscles were responsive to physiologic high-rate FJC stretch. The deep muscles (MF and LC) were recruited at significantly smaller capsule loads and onset latencies than the superficial muscles (TR and SM). MF activation strain was significantly smaller than LC and TR activation strains. These data were also compared to previously published low-rate data. MF was the first muscle group to be recruited regardless of the activation criterion under consideration (i.e. strain, load, or latency) or the rate of FJC stretch. LC recruitment occurred significantly sooner under high-rate vs. low-rate FJC stretch. The results of this study provide further evidence of extensive ligamento-muscular reflex pathways between the FJC and the cervical musculature, which are responsive to both low-rate and high-rate FJC stretch. These data add to our knowledge of the dynamic response of paraspinal muscles relative to facet joint motion and provide a unique contribution to enhance the precision of computer-simulated impacts.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Biomechanics of Human Ribs: Material and Structural Properties from Dynamic Tension and Bending Tests

2007-22-0011

View Details

TECHNICAL PAPER

A NEW TENSILE TEST PIECE AND HOLDER

130030

View Details

TECHNICAL PAPER

A High Strain Rate Constitutive Model for High Strength Steels

2003-01-0260

View Details

X