Browse Publications Technical Papers 2011-01-1708
2011-05-17

Application of the Hybrid FE-SEA Method to Predict Sound Transmission Through Complex Sealing Systems 2011-01-1708

Currently, the use of numerical and analytical tools during a vehicle development is extensive in the automotive industry. This assures that the required performance levels can be achieved from the early stages of development. However, there are some aspects of the vibro-acoustic performance of a vehicle that are rarely assessed through numerical or analytical analysis. An example is the modeling of sound transmission through vehicle sealing systems. In this case, most of the investigations have been done experimentally, and the analytical models available are not sufficiently accurate. In this paper, the modeling of the sound transmission through a vehicle door seal is presented. The study is an extension of a previous work in which the applicability of the Hybrid FE-SEA method was demonstrated for predicting the TL of sealing elements. A numerical validation of simplified Hybrid FE-SEA model is performed, which is followed by the application of the method to the TL of a car door seal. A full non-linear deformation/contact analysis is used to estimate the deformed geometry of the door seal in real conditions. The geometry is then used in a vibro-acoustic analysis to predict the in-situ transmission loss of the seal using a local Hybrid FE-SEA model. The channel between the door and the car structure where the seal is located is also included in the analysis. Results for the transmission loss are compared with experimental data, showing a good correlation.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
We also recommend:
TECHNICAL PAPER

Prediction of Sound Transmission through Door Seals Using the Hybrid FE-SEA Method

2010-36-0531

View Details

JOURNAL ARTICLE

Prediction of Automotive Side Swing Door Closing Effort

2009-01-0084

View Details

TECHNICAL PAPER

Simulation of Creep Phenomenon for Gasket Sealing

2013-26-0073

View Details

X