Browse Publications Technical Papers 2010-22-0003
2010-11-03

Estimating the Influence of Neckform Compliance on Brain Tissue Strain During a Helmeted Impact 2010-22-0003

The aim of this study was to determine if a change in neckform compliance could influence maximum principal strain in the brain white and grey matter, the brain stem and the cerebellum. This was done by impacting a Hybrid III headform with a 16.6 kg impactor arm at 5 m⋅s\u-1. Three different Hybrid III neckforms were used: 1) one 50th percentile male neckform - standard neckform; 2) one 50th percentile male neckform plus 30 percent compliance - soft neckform; 3) one 50th percentile male neckform minus 30 percent compliance - stiff neckform. The kinematic data obtained was then used to drive a finite element model developed by University College Dublin. The results showed that a decrease in neckform compliance had a significant effect on maximal principal strain in the cerebellum, where the stiff neck (0.050 ± 0.004) generated higher maximum principal strains than the standard neck (0.036 ± 0.003) and the soft neck (0.037 ± 0.001). There were no significant differences between the stiff (0.122 ± 0.013), standard (0.114 ± 0.020) and soft neck (0.119 ± 0.019) in the white matter; the stiff (0.168 ± 0.011), standard (0.176 ± 0.011) and soft neck (0.176 ± 0.007) in the grey matter; or the stiff (0.080 ± 0.003), standard (0.081 ± 0.006) and soft neck (0.085 ± 0.009) in the brain stem. The results were not linked to brain injury due to the absence of a commonly accepted threshold.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model

2008-22-0001

View Details

TECHNICAL PAPER

A Biomechanical Evaluation of the Ford Side Impact Body Block and the SID and APR Side Impact Dummies

840882

View Details

TECHNICAL PAPER

Methodological Aspects of an Experimental Research on Cerebral Tolerance on the Basis of Boxers' Training Fights

872195

View Details

X