Browse Publications Technical Papers 2010-01-0880
2010-04-12

Experimental and Numerical Analysis of High Pressure DME Spray 2010-01-0880

DME has lower energy content per unit volume than that of light oil (typical petroleum based diesel fuel). Roughly 1.8 times the quantity of DME is required to obtain equivalent content of light oil. DME also exhibits higher compressibility and much lower viscosity than light oil, so high pressure injection is not easy. Currently, DME engines have utilized a larger injection volume by enlarging the nozzle diameter with a relatively low injection pressure up to 60MPa. In order to obtain higher performance in future DME engines, high pressure fuel injection is considered essential, however the high pressure DME spray characteristics have not yet been understood.
In this research, DME spray characteristics of high injection pressure up to 140MPa were examined using a constant volume vessel under engine-like temperature/pressure conditions. For a spray observation, two methods were used: a shadowgraph method and a diffuse forward scatter method, in order to distinguish between gaseous and liquid phase fuel. A high-speed video camera with 20,000 frames per second and 304×304 pixel resolution was used to image the DME spray. The internal DME spray structure was investigated with numerical analysis using the KIVA-3V. Physical properties of DME required by the numerical analysis were carefully provided, and KIVA-3V was modified by calibrating the numerical model to the DME spray observation results.
Results showed that DME evaporation was overwhelmingly faster compared to light oil, and a more evenly distributed leaner spray was formed. Even when using a larger nozzle diameter at a lower injection pressure of about 60MPa, the overall average interior spray equivalence ratio was equivalent to a light oil spray with an injection pressure of 200MPa. When the fuel injection pressure was increased, air entrainment was further improved, which indicates that this may effectively improve DME engine performance in the high speed, high load region.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Study on HCCI Combustion and Emission Characteristics of Diesel Engine Fueled with Methanol/DME

2010-01-0578

View Details

TECHNICAL PAPER

Optical Spray Investigations on OME3-5 in a Constant Volume High Pressure Chamber

2019-24-0234

View Details

TECHNICAL PAPER

CO2 Neutral Fuels in Series Engines - Demonstration of the Potential of OME with Regard to Efficiency and Ultra-Low Emissions

2021-24-0061

View Details

X