Browse Publications Technical Papers 2010-01-0022
2010-04-12

Investigation of the Machining of Titanium Components for Lightweight Vehicles 2010-01-0022

Due to titanium's excellent strength-to-weight ratio and high corrosion resistance, titanium and its alloys have great potential to reduce energy usage in vehicles through a reduction in vehicle mass. The mass of a road vehicle is directly related to its energy consumption through inertial requirements and tire rolling resistance losses. However, when considering the manufacture of titanium automotive components, the machinability is poor, thus increasing processing cost through a trade-off between extended cycle time (labor cost) or increased tool wear (tooling cost). This fact has classified titanium as a “difficult-to-machine” material and consequently, titanium has been traditionally used for application areas having a comparatively higher end product cost such as in aerospace applications, the automotive racing segment, etc., as opposed to the consumer automotive segment. Herein, the problems associated with processing titanium are discussed, and a review of cutting tool technologies is presented that contributes to improving the machinability of titanium alloys. Additionally, non-conventional machining techniques such as High Speed Machining and Ultrasonic Machining are also reviewed. Additional factors specific to machining titanium alloys are also discussed, a crucial one being its non-conformity with standard tool wear models. Subsequently, the results of a controlled milling experiment on Ti-6Al-4V are presented, to evaluate the relationship between tool preparation/process parameters and tool wear and for a comparison with traditional wear models.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Potential for Automotive Applications of Titanium Alloys

860608

View Details

TECHNICAL PAPER

Powertrain NVH: Strategic Damping & Isolation Approaches

2008-36-0593

View Details

TECHNICAL PAPER

Strategies for Managing Vehicle Mass throughout the Development Process and Vehicle Lifecycle

2007-01-1721

View Details

X