Browse Publications Technical Papers 2009-01-1774
2009-06-15

Experimental and Numerical Investigation of Iso-Octane, Methanol and Ethanol Regarding Laminar Burning Velocity at Elevated Pressure and Temperature 2009-01-1774

The laminar burning velocity is one key parameter for the numerical simulation of gasoline engine combustion processes. In order to understand the effect of the laminar burning velocity of different fuel components on modern engine development it is of great interest to conduct experiments under high initial pressure and temperature. Initial conditions in this publication are a pressure of p = 10bar and a temperature of T = 373K.
Special focus has been laid on the common C1 and C2 alcohols, methanol and ethanol, which are frequently used for blending components in standard gasoline.
The experimental setup consists of a spherical closed pressurized combustion vessel with optical access. Schlieren measurements coupled with a high speed camera are used for image acquisition to track the expanding flame front. Finally, a post processing tool is used to extrapolate the measurements to zero stretch.
Experiments were done at different fuel-air ratios between Φ = 0.8 and up to Φ = 1.2. Test fuels were the pure component iso-octane, methanol and ethanol or mixtures iso-octane / methanol and iso-octane / ethanol with a maximum blend rate of 10% volliq regarding the alcohol.
Thereafter, numerical simulations using high temperature chemical models were undertaken to estimate the laminar burning velocity for a distinct amount of experimental test points.
Experimental results are discussed in detail and compared with the numerical simulations as well as references from literature.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Spray Structure Generated by Multi-Hole Injectors for Gasoline Direct-Injection Engines

2007-01-1417

View Details

TECHNICAL PAPER

Air/Fuel Distribution Simulation in a Port Injected Gasoline Lean-burn Engine

2001-01-1230

View Details

JOURNAL ARTICLE

A Numerical Model for Flash Boiling of Gasoline-Ethanol Blends in Fuel Injector Nozzles

2011-24-0003

View Details

X