Browse Publications Technical Papers 2009-01-0768
2009-04-20

Improvements in CFD Simulation of Aero-Acoustics in a Throttle Body 2009-01-0768

Computational Fluid Dynamics simulation of aero-acoustics requires a high fidelity mesh. For Direct simulations, a very good quality and reasonably refined mesh is required in the entire domain encompassing the source and receiver of the sound. A usual practice so far has been to use structured grid to mesh the geometries. For complex geometrical shapes, such as throttle body, creating a fully structured mesh becomes very tedious and could consume a lot of time. Once the computational model is in place, obtaining meaningful solution also takes a long time since the solution has to be run for quite the long time in order to capture reasonably accurate sound pressure data. The current paper focuses on both of these time-consuming aspects.
A comparative study of three different mesh types in a throttle body geometry is considered. The mesh types range from fully hexahedral to a hex-dominant mesh (with tetrahedral elements near the walls and hexahedral elements in the core) to a full polyhedral mesh. The transient simulation speedup is achieved using the Non-Iterative transient solver. Sound spectrum results from the three simulations show that the SPL at the first frequency peak is captured well by all the three meshes. The comparison of spectrum with test data too looks reasonably good for all the three simulations.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Computational Aero-acoustics Simulation of Whistle Noise in An Automotive Air-Intake System

2005-01-2364

View Details

TECHNICAL PAPER

CFD Simulation of Pressure Drop in Line Pipe

2006-01-1443

View Details

TECHNICAL PAPER

Computational Aero-Acoustics Simulation of Compressor Whoosh Noise in Automotive Turbochargers

2013-01-1880

View Details

X