Browse Publications Technical Papers 2009-01-0623
2009-04-20

Thermal Aging of Catalysts in Combined Aftertreatment Systems 2009-01-0623

To fullfill continually decreasing future emission standards, combined exhaust aftertreatment systems consisting of different catalyst technologies and particulate filter are necessary. Over the lifetime of such systems, catalytic performance of all individual components decreases due to thermal aging and poisoning effects. This has to be taken into account during system design as well as during the development of the operating and control strategies, to ensure long term system performance. Especially in commercial vehicle applications, this is an important issue because of long vehicle lifetimes in terms of mileage.
In combined aftertreatment systems, the thermal histories of the catalytic components are linked and influence each other. Especially in systems containing a diesel particulate filter, thermal aging of all components is mainly dominated by the active DPF regeneration strategy for the filter. During aftertreatment system development, temperature measurement data was gathered to investigate temperature profiles in different catalysts and filter during active DPF regeneration procedures, studying the influence of different regeneration strategies and operating conditions. This data was statistically evaluated and aging profiles for the different components were deduced. As thermal aging is largely dominated by the maximum temperatures inside the components, time reduced aging procedures could be developed focusing on the maximum temperature exposure.
During test bench investigations on combined aftertreatment systems, components were aged according to the developed procedures. The influence of thermal aging on catalytic conversion was investigated, on individual components and in combined systems.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Improved DPF Substrate for Washcoat Accomodation

2009-01-0288

View Details

TECHNICAL PAPER

Optimization of Diesel Oxidation After-Treatment Systems for Indian Market Scenario

2015-26-0094

View Details

TECHNICAL PAPER

On-Road Demonstration of NOx Emission Control for Diesel Trucks with SINOx Urea SCR System

1999-01-0111

View Details

X