Browse Publications Technical Papers 2008-01-1641
2008-06-23

Numerical Analysis of the Fuel Mixing Process in a Multi-Fuel Injection System 2008-01-1641

The paper focuses on the mixing process of different fuels in a multi-fuel low pressure common rail injection system for a four stroke SI engine. The study is devoted to the prediction of the fuel mixture delivered by the injectors during a transient in which gasoline is being replaced by ethanol or a gasoline/ethanol blend. An integrated approach of different numerical tools is used to model the rail dynamic behavior under actual operating conditions.
First, the 1D model of the injection system is constructed and the time varying conditions at the accumulator inlet and at the injectors' boundaries are assessed. The second step of the study is centered on the CFD analysis of the mixing process within the rail. The effects of the different engine operations on the fuels mixing are investigated and the injected fuel distribution among the cylinders is calculated. An open source computational fluid dynamics code is used in the simulations. The modified VOF approach, used for modeling the fluid-fluid mixing process, is tailored in order to account for the turbulence effect.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Combustion Robustness Characterization of Gasoline and E85 for Startability in a Direct Injection Spark-Ignition Engine

2012-01-1073

View Details

TECHNICAL PAPER

Effects of Fuel Composition on In-Cylinder Air/Fuel Ratio During Fuelling Transients in an SI Engine, Measured Using Differential Infra-Red Absorption

961204

View Details

TECHNICAL PAPER

Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection

2018-37-0008

View Details

X