Browse Publications Technical Papers 2006-01-3258
2006-10-16

The Development and Testing of an Active Particulate Regeneration System Using Model Based Control 2006-01-3258

With ever tightening vehicle emissions standards the fitment of Diesel Particulate Filter (DPF) systems will become common in the US, Europe and Japan. While in most circumstances filters may be regenerated passively there is a risk that this will not always be possible due to the low exhaust gas temperatures in certain stop-start duty cycles (such as urban buses, garbage trucks, etc.). In order to operate in such cycles active regeneration will be required.
A potential active regeneration method is to inject diesel fuel upstream of a catalyst and use the resulting exotherm from the combustion of the fuel to regenerate the particulate trap. In order for this to occur, the catalyst must be above the light off temperature, so it is necessary to understand the condition of the catalyst prior to initiating regeneration. Using diesel fuel for regeneration obviously has an impact on the fuel consumption of the vehicle so it is important to understand the soot loading of a particulate trap during operation to maximize the time between active regenerations.
This paper describes the development and testing of an active regeneration system including a catalyst, a particulate trap and a model based control system. The control system will model the soot loading and passive regeneration of the filter to allow the maximum time between active regeneration events, thus minimizing fuel penalty. The system also models the condition of the catalyst and uses this for both active and passive regeneration calculations for the particulate trap subroutine of the control algorithm.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

High-Porosity Cordierite Honeycomb Substrate Design Parameter Study in Combination with Vanadia SCR

2016-01-0949

View Details

TECHNICAL PAPER

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-01-0211

View Details

JOURNAL ARTICLE

Impact of SCR Integration on N2O Emissions in Diesel Application

2015-01-1034

View Details

X