Browse Publications Technical Papers 2006-01-0416
2006-04-03

The Influence of NO on the Combustion Phasing in an HCCI Engine 2006-01-0416

In this work the influence of NO on combustion phasing has been studied experimentally in a single cylinder HCCI engine. A isooctane/n-heptane blend (PRF), a toluene/n-heptane mixture (TRF) and a full boiling range gasoline were tested at two different operating conditions with NO concentrations ranging from 4 up to 476 ppm in the fresh intake air. All three fuels had the same RON of 84. The first operating condition had a high intake pressure (2 bar absolute) and low intake temperature (40 °C), where low temperature chemistry is relatively prominent. The other operating condition had a high intake temperature (100 °C) and atmospheric intake pressure with significantly lower cool flame reactivity. Additionally the effect of NO at two different engine speeds, 900 and 1200 rpm were studied.
The combustion phasing, represented by CA50 was advanced up to 12.5 CAD by the influence of NO. In the cases with the TRF and the full boiling range gasoline the combustion phasing advanced with an increasing NO concentration. The combustion phasing in the PRF case also advanced at low concentrations of NO, but retarded beyond the baseline case at high concentrations in the high-pressure case. Such effects on combustion phasing are explained in terms of reaction kinetic theory from the literature. At low concentrations NO provides extra branching pathways, but as NO concentration increases termination reactions take over. The interaction of NO and aromatic fuels has not been theoretically examined to the same extent in the literature and more work in this area is needed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effects of Engine Speed, Fueling Rate, and Combustion Phasing on the Thermal Stratification Required to Limit HCCI Knocking Intensity

2005-01-2125

View Details

TECHNICAL PAPER

Detailed Chemical Kinetic Modeling of Diesel Combustion with Oxygenated Fuels

2001-01-0653

View Details

TECHNICAL PAPER

The Interaction Between Nitric Oxide and Hydrocarbon Oxidation Chemistry in a Spark Ignition Engine

972889

View Details

X