Browse Publications Technical Papers 2002-01-3138
2002-11-18

Nonlinear Brake Squeal Analysis 2002-01-3138

Brake squeal noise is a top warranty concernsmplaints for virtually all automotive companies. How to identify squeal frequencies and mode shapes is typically very challenging. The identification of potential squeal problems still rely heavily on experimental methods using inertia and chassis dynamometers or on-road tests, but these require hardware to run. Good numerical methods have advantages of evaluating up-front designs before the cutting tools ever hit any metal. But for brake squeal, there are still many challenges to overcome to correctly model a complete brake system due to the nature of the complexity of the frictional excitation. In this paper, a disc brake system model was established to simulate brake squeal using nonlinear transient analysis methods provided through LS-DYNA. The model includes rotor, pads, linings, caliper and pistons. From the example analyzed, the squeal frequency is identified using frequency domain analysis of the numerical time-domain output. Results are checked and correlated to test results. Operational deflection shapes of rotor and pads during the numerically simulated squeal event were obtained. The nodal diametrical modes of rotor at different squeal frequencies are displayed. The relative displacements of inboard and outboard pads at different squeal frequencies are discussed.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Effects of Brake Pad Boundary Contact Surfaces on Brake Squeal

2011-01-2355

View Details

JOURNAL ARTICLE

A Novel Approach for the Frequency Shift of a Single Component Eigenmode through Mass Addition in the Context of Brake Squeal Reduction

15-16-01-0004

View Details

TECHNICAL PAPER

The Role of Friction Film in Friction, Wear, and Noise of Automotive Brakes

900004

View Details

X