Browse Publications Technical Papers 2002-01-2155
2002-07-09

A Ti/Pt Hot Film Anemometer for CR-Injection Systems 2002-01-2155

By e-beam evaporating a thin film resistor, consisting of a Titanium (≈10nm)/Platinum (≈100nm) bi-layer, on a LTCC (Low Temperature Cofired Ceramic) substrate, a robust and fast responding thermal mass flow sensor is developed. Due to the integration of the latter into the nozzle of a Common Rail (CR) injection system, important parameters, as the injection rate as well as the begin/end of the injection pulse, can be determined with high accuracy. By a closed-loop control of the magnetic or piezo-electric driven valve, a smooth combustion process with lower NOx emission values could be achieved. This present paper mainly focuses on analytical calculations to determine the velocity and temperature sensitivity of the thermal mass flow sensors in the constant-current (CC) mode. Because of the cross sensitivity of the thermo-resistive measurement principle, a second thin film resistor, fabricated with the same technology and operated in the low temperature regime, is desired, to detect any temperature changes of the fuel for a proper interpretation of the sensor signals. Further on, the first injection rate measurements up to 130 MPa are presented and the sensor characteristics, which yield high amplitudes during injection, are discussed. For a long-term reliable operation of the hot film anemometers under these harsh environmental conditions, a proper passivation technology is indispensable. Amorphous silicon carbide (a-SiC:H) exhibits an excellent coverage of the surface and a good adhesion to the glass ceramic substrate, enabling a clear reduction of drift effects on sensor constants in oil atmosphere. atmosphere. atmosphere.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

A Thermo-Resistive Flow Sensor for Injection Rate Measurements

2002-01-0212

View Details

TECHNICAL PAPER

A Measurement of Instantaneous Flow Rate of an Automotive Gaseous Fuel Injector

2007-24-0008

View Details

TECHNICAL PAPER

A Nozzle-Integrated Flow Sensor for Common-Rail Injection Systems

2001-01-0614

View Details

X