Browse Publications Technical Papers 2000-01-1574
2000-04-02

Constitutive Modeling and Impact Simulation of Random Carbon Fiber Polymer Matrix Composites for Automotive Applications 2000-01-1574

Damage constitutive models based on micromechanical formulation and a combination of micromechanical and macromechanical effects were developed by the authors to predict progressive damage in aligned and randomly oriented carbon fiber polymer composites. The models are extended in order to account for the microcrack effect on the mechanical behavior of the composites. Progressive interfacial fiber debonding models are considered in accordance with a statistical function to describe the varying probability of fiber debonding. Finally, the complete progressive damage constitutive models are implemented into the finite element code DYNA3D to perform impact simulation of random fiber-reinforced composites for future use in advanced automotive materials. The implemented model is applicable for shell and solid elements in three-dimensional analysis, as well as axisymmetric elements in two-dimensional analysis. In addition, the numerical incorporation allows a prediction of the mechanical response of large composite structures under stress or during impact and eliminates the need for expensive, large-scale experiments.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
X