Browse Publications Technical Papers 2000-01-1283
2000-03-06

SUPERIMPOSING ULTRASONIC WAVES ON TUBE AND WIRE DRAWING 2000-01-1283

The drawing forces during wire and tube drawing can be reduced by ultrasonically oscillating dies. A major problem of conventional wire and tube drawing is to introduce high forces into the forming area. Compared to conventional wire and tube drawing, the forming process limits can be extended by superimposing ultrasonic waves due to decreasing drawing forces. Different techniques can be used to exite the die. One possibility is the variation of the vibration mode. In tube and wire drawing, the dies are usually exited longitudinally. If the vibration direction is parallel to the drawing direction, the main influence will be on the friction between workpiece and die. The Institute for Metal Forming Technology of the University of Stuttgart, Germany started a project to investigate the effect of ultrasonic waves on the tribology and on the the formability of the workpiece. The objective of this investigation is to separate the ultrasonic effect on the surface from the volume effects. This paper shows, that the reduction of the sliding friction between a longitudinal oscillating die and the workpiece can be explained by the so called Sliding Friction Vector Effect (SFVE). A statistical evaluation of roughness-measurements makes it possible to show the effect of the ultrasonic vibration on the friction and gives an insight into the operation of the SFVE. The results are compared with wire and tube drawing experiments of copper and Ti-alloys. New tube- and wire-drawing experiments with longitudinally vibrating dies support the theoretical approach. The surface-quality of the manufactured workpieces can be improved and the productivity increases.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Prediction of Draw Bead Coefficient of Friction Using Surface Temperature

2002-01-1059

View Details

TECHNICAL PAPER

Assessing the Total Vehicle Impact of Alternative Body Technologies

2002-01-2069

View Details

TECHNICAL PAPER

Evaluation of Tailor Welded Blanks Through Technical Cost Modeling

980446

View Details

X