Browse Publications Technical Papers 2000-01-0640
2000-03-06

Determination of Seat Sponge Properties with Estimated Biodynamic Model 2000-01-0640

This paper deals with the determination of the seat sponge parameters by using the estimated nine degree-of-freedom biodynamic model. The suggested nine DOF model has multiple outputs that include the major axes for evaluating the ride quality in vehicles such as z-axis of the floor, hip, and x-axis of the back, in addition to the z-axis of the head for describing the whole-body vibration. It is intended to resemble the sitting posture with backrest support. Three experiments were executed to validate the proposed models. The first one was to measure the acceleration of the floor and hip in z-axis, the back in x-axis, and the head in z-axis under exciter. From this measurement, the transmissibilities of each subject were obtained. The second one was the measurement of the joint position by the device having pointer, and contact point between human body and seat by pressure sensor. The third one was the dropping test to measure the seat and back cushion. The biodynamic model parameters were obtained by matching the simulated to the experimental transmissibilities at the hip, back, and head.
From this estimated biodynamic model, the optimal seat parameters are determined to minimize the overall ride value at the floor, the hip, and the back on three different road - highway, Korean national road, and unpaved road, with the constraint that the stiffness of sponge has a roughly linear relation with the damping, when making a sponge form by changing the mixing ratio, the index, and molded weight. The optimal seat sponge characteristics is found that the lower stiffness and damping transmits the lower vibration to human body.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

The Soft & Firm Seat: How Innovation in Automotive Seating Can Improve the User’s Well Being

2001-01-0383

View Details

STANDARD

H-III5F Spine Box Update to Eliminate Noise

J2915_202205

View Details

TECHNICAL PAPER

WorldSID 5th Percentile Prototype Dummy Development

2007-01-0701

View Details

X