Browse Publications Technical Papers 1999-01-1310
1999-03-01

Modeling of the Human Cervical Spine Using Finite Element Techniques 1999-01-1310

Using finite element technique to model the human cervical spine can be found in a number of publications in the literature. These efforts have illustrated viable techniques and approaches for simulating the three-dimensional motion of the human cervical spine. However, these earlier studies also revealed difficulties due to insufficient geometric description for such a complex structure and the lack of experimental data for characterizing the mechanical behavior of the biological tissues in this anatomical region. Recent advancement of the computer technology has resulted in a large quantity of digital images of the human anatomical structure with high precision. In addition, new experimental techniques have also produced new test data on human biological tissue properties. In this study, we developed a finite element representation of the human cervical spine using detailed 3D anatomical data. The model contains the important structural components of the cervical spine including the vertebrae, the disks, the ligaments and the facets. Analytical/numerical schemes were developed to identify the viscoelastic material parameters from the quasi-static and dynamic test data of the soft tissues. Material models in the Dyna3D code were enhanced to simulate the mechanical behavior of these soft tissues. The motion segment models were then validated against the three-dimensional global responses observed from the experiments.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Dynamic Modeling of the Minimum Consumables PLSS

1999-01-1999

View Details

TECHNICAL PAPER

Determination of Human Thermal Experimental Uncertainty

2001-01-2270

View Details

TECHNICAL PAPER

Examination of Digging Efficiency Considering Force Feedback for Hydraulic Excavators

2010-01-1923

View Details

X